Cultural Heritage Imaging


Reflections on Threats to World History by chicaseyc

Our guest blogger, Matt Hinson, is a junior at the School of Foreign Service at Georgetown University in Washington, D.C. He spent the summer as an intern at CHI. Thanks, Matt!

ISIS destruction at Nimrud

Screen shot from ISIS video of the destruction of Nimrud, April 2015

During my summer internship at Cultural Heritage Imaging (CHI), I learned a great deal about the danger facing many of the world’s treasures as well as the efforts to save them. My background in international history leads me to believe that international law and policy can help to address many of the dangers. I have also learned how CHI is contributing to the revolution in how we interact with information and deal with these cultural heritage threats.

The variety of projects that CHI undertakes demonstrates the wide range of threats facing cultural heritage. Although some of CHI’s most recent projects have dealt with weathering and natural deterioration, it is important to understand the other risks to humanity’s greatest treasures. One can categorize tangible cultural heritage sites into natural formations, historic structures, including cities and sculptures, and inscriptions. Complex rock formations, the cities built by ancient cultures, works of art, and monuments are all included. It is also important to recognize cultural heritage sites that hold symbolic value to a specific community or group. Many of these are protected by national parks and museums, but only to a certain extent. Multiple forces continue to threaten this material.

Threats can be divided into man-made and natural. The man-made category encompasses destruction from conflict, construction, and development. Human neglect can also be included as a potential danger to the survival of important sites. War has become one of the most widely observed man-made threats to cultural heritage, particularly in ongoing conflicts in Africa and the Middle East. Groups fighting for ideological reasons, such as religious fundamentalists, have attempted to destroy artifacts that contradict their beliefs. The recent destruction of the ancient city of Nimrud by the Islamic State is one prominent example. Conflict areas tend to encourage looting of historic sites, leading to sales of antiquities on the black market. Often the lure of financial gain from the development of sites that contain important heritage outweighs the cultural value that is at risk. One example is the impending destruction of an ancient Turkish cave city after the completion of a dam that will put it under water.

In most parts of the world, environmental threats to cultural heritage are more prevalent than man-made ones. For monuments, statues, and other structures made of stone, weathering is a common means of loss. Precipitation, especially acid rain, and other kinds of exposure to water can lead to the gradual erosion of stone, rotting of wood, and general deterioration of sites and monuments.

map-of-threats-from-sea-rise

National Park Service (NPS) map of the 105 US parks vulnerable to sea level rise. From “Strategies for Coastal Park Adaptation to Climate Change”: http://marineprotectedareas.noaa.gov/pdf/helpful-resources/webinar_beavers_schupp_nps_coastalcasestudies_111413.pdf

Environmental damage caused by climate change is accelerating the destruction. Rising sea levels are predicted to have a particularly devastating impact on many cultural sites. A recent study shows that predicted sea level rise over the next years will put 80% of Icelandic cultural sites at risk. According to the National Park Service (NPS), natural heritage sites in the US are also at risk. The NPS reports 105 parks as “vulnerable to sea level rise.” The effect on weather patterns due to climate change, particularly the increase in severe weather events, could pose major threats to cultural heritage sites beyond normal historical weathering.

How can these various threats be addressed? Archaeological preservation is one common method of physically excavating and preserving important historical artifacts. Moving objects to museums has successfully preserved different forms of cultural heritage throughout time. Digital imaging, practiced here at CHI, is a powerful tool to be used alongside archaeological methods to provide additional, more detailed information for the historical record. Digital representations of cultural heritage sites can be used to monitor the rates of change at these sites as well as preserve their shape and cultural significance. The re-creation of cultural heritage with digital methods also impacts how information is shared: an artifact that may be thousands of miles away can be viewed by anyone anywhere in an accurate digital form. This also allows objects and sites to stay in their original locations while providing access to their digital representations.

From my perspective, a crucial element in furthering the protection of cultural heritage is the legal and political protection of these sites. International law has developed to protect the things that have been identified as most sacred to communities around the world, including human dignity, life, and freedoms. Cultural heritage must be worthy of the same kind of protection every day as well as in wartime. Although some institutions already exist to defend cultural heritage, UNESCO, for example, I believe we must govern the protection of artifacts and sites with laws just as we do in cases of war crimes and sovereignty.

Another lesson I take away from my time at CHI concerns the changes in our interactions with information and knowledge. I am familiar with the usual media in our repositories of knowledge: text, photographs, video, and audio. While these media convey interpretations and descriptions of their subject matter, they rarely can stand as accurate representations of sites and objects. The potential that three-dimensional imaging brings to human interaction with information can be enormous. Many historical and cultural wonders previously limited to a particular geographical area could be made accessible to others, leading to progress in historical and interpretive research. Expanding research on these 3D methods, such as the ongoing work at CHI, can lead to highly effective ways of contributing to this revolution in information.

RTI study of the Sennedjem Lintel

The Sennedjem Lintel from the Phoebe A. Hearst Museum of Anthropology at the University of California, Berkeley. Lower left left shows the surface color and shape. Upper right shows an enhanced surface shape.

CHI has exposed me to a lot of these problems facing world heritage sites but has also introduced me to the preservation and information successes that are possible with different methods and technologies.

Advertisements


From Ravenna to Berlin: Documenting the medieval mosaic of San Michele in Africisco with RTI by chicaseyc

Our guest blogger is Heidrun Feldmann, a PhD student in History of Art at the University of Basel and an assistant on the research project “Digital Materiality” at the Digital Humanities Lab there. Thank you, Heidrun!

It is obvious that art historians need good reproductions of works of art to do their research. However, photographic images, which are static and two-dimensional, are not capable of reproducing the visual impression we have when we look at mosaics. Their specific materiality and surface properties make a visualization of these characteristics difficult. Besides, as ancient or medieval mosaics are usually placed on the walls of churches, they interact with those specific surroundings. The lighting conditions inside these buildings, as well as the optical impressions for a visitor moving across the room, change dynamically, which results in a unique sensory experience. This is also a reason why the designs of mosaics in such religious contexts were often attuned to the liturgy. The impressive sparkling effect is caused by the surface properties of the countless tesserae, which – when animated by light − shimmer in many different colours and shine like precious metals. Sometimes those tesserae were placed in the setting bed with a certain tilt angle. This might seem irregular to us today, but then it was done intentionally to optimize the reflectivity of the surface.

With the aid of RTI (Reflectance Transformation Imaging), we now have more options for capturing and simulating the reflection properties of a mosaic’s surface, as well as its interaction with changing light conditions. The RTIViewer software enables us to convey the impressions of this highly dynamic medium to people who cannot visit the actual mosaic in situ. RTIs also help us document the current condition of mosaics more accurately than in the past, and they support our goal to answer questions about how light was used in medieval architecture.

To test the RTI method, we visited the Bode-Museum in Berlin, where a mosaic, originating from the church of San Michele in Africisco, Ravenna, is exhibited as part of the Early Christian and Byzantine Collection (Figure 1). We thank Gabriele Mietke, curator of the department, for allowing us to take our photos. The mosaic is fitted into the architecture of the museum, where an apse was constructed to imitate the original place of its installation in the church in Ravenna, albeit without the original lighting situation.

mosaic-fig1-center

Figure 1: The team of the Digital Humanities Lab taking photographs of the mosaic at the Bode-Museum, Berlin.

Scholars have extensively debated the condition and state of preservation of this mosaic. Without going into all the details, we can say it is certain that the mosaic we see in the museum differs from the original of 545 AD because of its turbulent history. It has been restored and changed more than once, and some critics say that the whole mosaic is merely a copy. For us this was particularly interesting. We were wondering if the RTIs would provide further information regarding interventions, changes, or repairs.

Because of its size and form, it was impossible to take pictures that cover the whole of the apse. Therefore we captured it in twelve segments. About sixty photographs were taken of each of these segments, changing the position of the flashlight by hand for every picture. The twelve RTI files we obtained in this way show the reflection properties much better than any static photograph could do.

Figure 2: RTI image of the head of Christ in a detail from the mosaic.

Figure 2: RTI image of the head of Christ in a detail from the mosaic.

Figure 3: Same detail of the mosaic with light from a different direction.

Figure 3: Same detail of the mosaic with light from a different direction.

There are some limitations with glossy surfaces, because specular reflection cannot be adequately represented with the typical mathematical model used in Polynomial Texture Maps (the first form of RTI). However, changing the angle of the incoming light in the RTIViewer software allows us to identify areas whose structure and reflection properties differ from the others. In those areas the tesserae are of a different size or form and seem to be set in another way. All this suggests that these are the areas where the mosaic has undergone some kind of repair or restoration (Figures 2 and 3).

Having successfully tested the technique under the special conditions in the museum, we are now looking forward to the next step: capturing RTIs of medieval mosaics in situ and working on enhanced models for the visualization of gloss.

To find out more about our research project, see http://www.dhlab.unibas.ch.



The oldest footprints outside of Africa: an interview with Dr. Sarah M. Duffy about the imaging of this incredible find by cdschroer
September 22, 2014, 9:18 pm
Filed under: Commentary, Guest Blogger, News, On Location, Technology | Tags: , ,

Sarah Duffy, PhD is a Postdoctoral Research Associate at the University of York in the Department of Archaeology. In May of 2013, after a series of storms, ancient footprints were revealed on a beach near Happisburgh (pronounced “Hays-boro”) on Britain’s east coast in Norfolk (see a 6-minute video). The footprints were fragile and washing away a little day by day. Sarah was called to the site by Dr. Nick Ashton, Curator of Palaeolithic and Mesolithic collections at the British Museum, to document it. Here is our interview with Sarah about this dramatic discovery.

Duffy-Happisburgh-BM

Sarah shooting photogrammetry in the rain. Image courtesy of Natural History Museum, London, UK

CHI: Sarah, can you tell us how you got involved in the project and what you found when you arrived?

Sarah: It really came down to good timing and an opportune meeting of research colleagues. When the footprints were discovered, I had just begun working with Dr. Beccy Scott at the British Museum on a project based in Jersey called “Ice Age Island”. Beccy and my partner, Dr. Ed Blinkhorn, another early prehistoric archaeologist, have collaborated for many years, and he introduced us. During the week of the discovery, Beccy happened to be at a research meeting with Dr. Nick Ashton and suggested that he get in touch with me about the Happisburgh finding.

The next day, I received a call from Nick who asked if I would be able to take a trip to Norfolk to record some intertidal Pleistocene deposits at Happisburgh. Having just completed my PhD thesis (a “dissertation” in US currency), I was up for an adventure and ready to take on the challenge, and so I was on a train to the southeast coast two days later.

My first plan of action was to figure out how on earth you pronounced the name of the site! The next step was to figure out what equipment I would need to have available when I arrived. This proved somewhat challenging, as I had never visited the Norfolk coast, and it seems quite humorous in hindsight that one of the pieces of kit I requested was a ladder.

All of this said, the urgency to get the site photographed became clear when I showed up one very rainy afternoon in March. Standing on the shore, I felt very privileged to have been invited to record such an important set of features, which disappeared within only weeks of their discovery by Dr. Martin Bates.

CHI: What were your goals in the project and why did you choose to shoot images for photogrammetry? Can you tell us a little bit about your approach?

Sarah: Since I wasn’t sure what to expect when I reached the site, I took both photogrammetric and RTI kit materials with me. I intended to capture the 3D geometry of the prints with photogrammetry and subtle surface relief with RTI. However, when I arrived, both the weather and tidal restrictions limited the time we were able dedicate to recording. I therefore focused my efforts on photogrammetry, which proved a flexible and robust enough technique that we were able to get the kit down the cliff side in extremely challenging conditions and capture images that were used later to generate 3D models.

Based on the looming return of the tide and the amount of time required to prepare the site, our window of access was quite small. While I took the images, aided by Craig Williams and an umbrella, the rest of the team battled the rain and tide by carefully sponging water from the base of the features. As mentioned, I originally intended to capture images from above the site using a ladder. However, as the ladder immediately sank into the wet sand, I was forced to find other means of overhead capture: namely Live View, an outstretched arm, and umbrella. There was just enough time to photograph the prints, loosely divided into two sections, using this recording approach before we had to retreat back up to the top of the cliff (and to a very warm pub for a much deserved fireside pint!).

Footprints-model-SMD

3D model of laminated surface containing the footprints at Happisburgh. Photo by Sarah M. Duffy

CHI: When you got back to your office, how long did it take you to process the images, and what software did you use?

Sarah: Originally, I used the Standard Edition of PhotoScan by Agisoft, later returning to the image set in order to reprocess it with their Professional Edition. PhotoScan’s processing workflow is relatively straightforward, and the time required to generate geometry is somewhat dependent on the hardware one has access to. The post-processing of the images was by far the most time-consuming component of the processing sequence. Since the software looks for patterns of features, there was a substantial amount of image preparation that needed to be completed first, before models could be produced. For example, rain droplets on the laminated surface that contained the prints needed to be masked out, as well as the contemporary boot prints that accumulated in the sand that surrounded the site throughout the image sequence.

CHI: How were the 3D models you produced used by the other archaeologists involved with the site?

Sarah: Once the models had been generated, the rest of the team, including Nick Ashton, Simon Lewis, Isabelle De Groote, Martin Bates, Richard Bates, Peter Hoare, Mark Lewis, Simon Parfitt, Sylvia Peglar, Craig Williams, and Chris Stringer, wrote the paper on the results. Nick Ashton and Isabelle De Groote closely analyzed the models of the prints in order to study size, movement, direction, and possible age of the early humans who might have created these features. Isabelle later worked with the 3D printing department at Liverpool John Moores University in order to have one of the digital models printed.

CHI: Since the footprints were washed away, your images are the best record of the site that exists. Are the 3D models accessible? What will you do to preserve this material?

Sarah: Coverage of the footprints, including excerpts of the digital models that I generated and the 3D printout, can be viewed at the Natural History Museum exhibit in London, Britain: One Million Years of the Human Story, which closes September 28th. Findings from the analysis have also been published in PLOS ONE, an open-access, peer-reviewed scientific journal.

As mentioned, when I visited the site last March, I had hoped to undertake a RTI survey. Although conditions on the day of recording did not permit multi-light capture, I have since been able to generate virtual RTI models that reveal the subtle topography of the prints. An excerpt of one of these models can be viewed on my website.

Additionally, the research team, in collaboration with the Institute of Ageing and Chronic Disease at Liverpool, are currently working on extracting further information from the image set. Findings from this work will be made available in the future. Once analysis is complete, the images and resulting models will be archived with the British Museum.

CHI: Thank you for your time, Sarah, and what a great story!

Sarah Duffy has been collaborating with Cultural Heritage Imaging (CHI), including taking CHI’s training in Reflectance Transformation Imaging (RTI) and working with the technique since 2007 while she was a graduate student in Historic Preservation at the University of Texas at Austin. Sarah authored a set of guidelines for English Heritage on RTI. During her doctoral work, she also began to apply her imaging skills in the area of photogrammetry.



RTI @ the Museum Conservation Institute by cdschroer

By Guest Blogger  E. Keats Webb

Over the past three months I have been interning with Senior Conservator, Melvin Wachowiak, at the Smithsonian’s Museum Conservation Institute (MCI) exploring advanced imaging techniques for research and preservation of the collections focusing mostly on the Reflectance Transformation Imaging (RTI) method.  We started in September with an African leather shoulder bag, the RTI enhancing the faint tooling and degradation on the surface. In October we imaged a writing slate from the 1600s found in an archeological excavation of a well at the site of Jamestown, Virginia.  RTI proved an excellent tool in interpreting the drawings and writings that are found on both surfaces of the slate and at all orientations.  Other types of objects that we have explored include paper “squeezes” (molds taken from stone inscriptions), oil paintings, a jawbone, ebony and ivory inlaid cabinet doors and a daguerreotype.  We work alongside scientists and conservators on a daily basis at the Museum Conservation Institute, and RTI complements the studies happening within our labs along with other advanced imaging techniques used for research and preservation.

Set-up for the RTI of the Jamestown Slate.

E. Keats Webb left, Melvin Wachowiak right; Photo: Charles Durfor



Preserving Places & Objects That Matter by cwillen
June 2, 2009, 8:29 pm
Filed under: News | Tags: , ,

By Claudia Willen

Please join Cultural Heritage Imaging (CHI) in celebrating National Preservation Month this May. The National Trust for Historic Preservation selected “This Place Matters” as the theme for the 2009 preservation month. Visit the trust’s preservation month page for more stories and inspiration: www.preservationnation.org/take-action/preservation-month.

The CHI team has discovered many places that matter all over the US and the world. CHI wants to show everybody how to digitally preserve the places and objects that matter on our planet and share information about these treasured cultural resources so others will understand why they matter so much and why we need to save them.

Tell Us About the Places and Objects That Matter to You
In honor of National Preservation Month, let the CHI community know what cultural heritage means to you and what you think needs to be digitally documented, physically restored, heroically saved, or just better appreciated in general. We look forward to hearing from you via email or in the blogosphere!